1501/102 1508/102 1509/102 MECHANICAL SCIENCE I AND ELECTRICAL PRINCIPLES Oct./ Nov. 2022

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN MECHANICAL ENGINEERING (PRODUCTION OPTION) CRAFT CERTIFICATE IN WELDING AND FABRICATION CRAFT CERTIFICATE IN CONSTRUCTION PLANT ENGINEERING

MODULE I

MECHANICAL SCIENCE I AND ELECTRICAL PRINCIPLES

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Drawing instruments;

Mathematical tables

Non-programmable scientific calculator.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer FIVE questions by choosing TWO questions from section A, TWO questions from section B and ONE question from either section.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

Take: $g = 9.81 \text{ m/s}^2$;

 $\varepsilon_o = 8.85 \times 10^{-12} \text{ F/m}$:

 $\mu_{\rm o} = 4\pi \times 10^{-7} \text{ H/m}.$

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2022 The Kenya National Examinations Council.

Turn over

SECTION A: MECHANICAL SCIENCE I

Answer at least TWO questions from this section.

1.

1.	(a) Dist	inguish between power and work as used in mechanics stating the units for each.	
		(4 marks	()
	(b) A bo	ody of mass 5 kg is initially at rest on a horizontal frictionless surface. A force of is applied and accelerates it to a final velocity of 12 m/s. Calculate the:	,
	(i) (ii) (iii)	distance travelled; workdone by the force; final kinetic energy of the body.	
(6	e) (i)	Differentiate between centrifugal and centripetal forces.	1
	(ii)	A car whose wheels diameter is 600 mm travels at 64.8 km/h. Determine the angular velocity of the wheels in:	
		(I) rad/s; (II) rev/min.	
2. (a) State:	(8 marks)	
	(i) (ii)	three laws of friction; second law of motion.	
(b)	A bear such the beam centre.	m AB measures 150 cm and weighs 1.6 N. It is placed on two supports C and D hat they are 20 cm from each end of the beam. A 0.3 N weight hangs on the 40 cm from C and a 0.7 N weight hangs 50 cm from D respectively towards the	
	(i)	Sketch the beam indicating the forces;	
	(ii)	Determine the reactions at the supports.	
(c)	State:	(11 marks)	
	(i) (ii)	the principle of moments; moments of a couple.	
1501/102 1508/102 1509/102 Oct. / Nov. 202	22	2	

3.	(a)	Differentiate between potential energy and kinetic energy.	(4 marks)		
	(b)	A car hauls a trailer at 90 km/h when exerting a steady pull of 600 N. Calculate the:			
		(i) work done in 30 minutes; (ii) power required.	(10 marks)		
	(c) A motor supplies a constant force of 1 kN which is used to move of 5 m. The force is then changed to a constant of 5000 N and the further 15 m.		to a distance		
		(i) Draw the force-distance graph for the operation;			
		(ii) from the graph, determine the work done by the motor.	(6 marks)		
4.	(a)	Define each of the following terms:			
		(i) speed; (ii) velocity.			
			(2 marks)		
	(b)	A vehicle is accelerated uniformly at 1.5 m/s ² from a speed of 27 km/h to Determine the:	o 81 km/h.		
		(i) time required to attain the final speed;			
		(ii) distance travelled.	(6 marks)		
	(c)	A machine exerts a force of 240 N to move an object at a constant speed distance of 600 cm in 2 minutes. Determine its power.	through a (4 marks)		

1501/102 1508/102 1509/102 Oct. / Nov. 2022

- (d) Figure 1 shows a force system at equilibrium. Determine:
 - (i) force A;
 - (ii) force B.

SECTION B: ELECTRICAL PRINCIPLES

Answer at least TWO questions from this section.

5. (a) State the two Faraday's laws of electromagnetic induction.

(4 marks)

(b) Outline three characteristics of a parallel resistive d.c. circuit.

(3 marks)

- (c) Figure 2 is a series parallel electric circuit. Determine the:
 - (i) supply voltage (V);
 - (ii) supply current (I);
 - (iii) power dissipated by resistor R₁.

(10 marks)

Fig. 2

4

1501/102 1508/102 1509/102 Oct. / Nov. 2022 (d) Name three classifications of electrical materials.

(3 marks)

- 6. (a) Define each of the following terms as used in electrostatics:
 - (i) capacitance;
 - (ii) electric flux density.

(4 marks)

- (b) Figure 3 shows an electric circuit. Determine the:
 - (i) total capacitance;
 - (ii) charge stored by the whole circuit.
 - (iii) voltage across capacitor C₁;
 - (iv) energy stored by capacitor C2.

(9 marks)

- (c) (i) List three methods of connecting cells in electrical circuits.
 - (ii) Four dry cells have an internal resistance of 0.8Ω each. The e.m.f of each cell is 2 V. A load of 4Ω is supplied by the cells while connected in parallel. Determine the:
 - (I) total internal resistance;
 - (II) voltage across the load.

(7 marks)

- 7. (a) Define each of the following terms with respect to alternating quantities:
 - (i) frequency;
 - (ii) power factor.

(4 marks)

1501/102 1508/102 1509/102

102

5

Turn over

- (b) Figure 4 shows an R-L-C series circuit. Determine the: (i) circuit impedance; (ii) voltage across the capacitor; circuit power factor; (iii) active (real) power. (iv) (12 marks) $200\mu F$ V=240V, 50HZ Fig. 4 Draw a lebelled circuit diagram of a D.C shunt motor. (c) (4 marks) Define each of the following terms as used in magnetic circuits: (a) (i) magnetomotive force; (ii) reluctance. (4 marks) A mild steel closed magnetic circuit has mean length of 50 mm and a cross-sectional (b) area 480 mm². A current of 0.5 A flows through the coil wound uniformly around the mild steel and a flux of 300 pwb is established. If the relative permeability of steel is 400, calculate the: (i) reluctance of the magnetic circuit. (ii) number of turns of the coil. (iii) flux density. (9 marks) A transformer has 800 turns and 50 turns on the primary and secondary sides (c) respectively. If the primary voltage is 200 V and a current of 10 A flows on the secondary side, determine the: (i) secondary voltage;
 - (ii) primary current;
 - (iii) secondary load resistance.

(7 marks)

THIS IS THE LAST PRINTED PAGE.

1501/102 1508/102 1509/102 Oct. / Nov. 2022

8.